Peripheral CRF activates myenteric neurons in the proximal colon through CRF(1) receptor in conscious rats.

نویسندگان

  • Marcel Miampamba
  • Celine Maillot
  • Mulugeta Million
  • Yvette Taché
چکیده

Corticotropin-releasing factor (CRF) injected peripherally induces clustered spike-burst activity in the proximal colon through CRF(1) receptors in rats. We investigated the effect of intraperitoneal CRF on proximal colon ganglionic myenteric cell activity in conscious rats using Fos immunohistochemistry on the colonic longitudinal muscle/myenteric plexus whole mount preparation. In vehicle-pretreated rats, there were only a few Fos immunoreactive (IR) cells per ganglion (1.2 +/- 0.6). CRF (10 microg/kg ip) induced Fos expression in 19.6 +/- 2.1 cells/ganglion. The CRF(1)/CRF(2) antagonist astressin (33 microg/kg ip) and the selective CRF(1) antagonist CP-154,526 (20 mg/kg sc) prevented intraperitoneal CRF-induced Fos expression in the proximal colon (number of Fos-IR cells/ganglion: 2.7 +/- 1.2 and 1.0 +/- 1.0, respectively), whereas atropine (1 mg/kg sc) had no effect. Double labeling of Fos with protein gene product 9.5 revealed the neuronal identity of activated cells that were encircled by varicose fibers immunoreactive to vesicular acetylcholine transporter. Fos immunoreactivity was mainly present in choline acetyltransferase-IR nerve cell bodies but not in the NADPH-diaphorase-positive cells. These results indicate that peripheral CRF activates myenteric cholinergic neurons in the proximal colon through CRF(1) receptor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Peripherally administered CRF stimulates colonic motility via central CRF receptors and vagal pathways in conscious rats.

Corticotropin releasing factor (CRF) is one of the most important factors in the mechanism of stress-induced stimulation of colonic motility. However, it is controversial whether stress-induced stimulation of colonic motility is mediated via central or peripheral CRF receptors. We investigated the hypothesis that peripherally injected CRF accelerates colonic motility through the central CRF rec...

متن کامل

Cortagine, a CRF1 agonist, induces stresslike alterations of colonic function and visceral hypersensitivity in rodents primarily through peripheral pathways.

Corticotropin-releasing factor (CRF) 1 receptor (CRF(1)) activation in the brain is a core pathway orchestrating the stress response. Anatomical data also support the existence of CRF signaling components within the colon. We investigated the colonic response to intraperitoneal (ip) injection of cortagine, a newly developed selective CRF(1) peptide agonist. Colonic motor function and visceral m...

متن کامل

CRF-induced calcium signaling in guinea pig small intestine myenteric neurons involves CRF-1 receptors and activation of voltage-sensitive calcium channels.

Corticotropin-releasing factor (CRF) is a 41-amino acid peptide with distinct effects on gastrointestinal motility involving both CRF-1 and CRF-2 receptor-mediated mechanisms that are generally claimed to be centrally mediated. Evidence for a direct peripheral effect is rather limited. Electrophysiological studies showed a cAMP-dependent prolonged depolarization of guinea pig myenteric neurons ...

متن کامل

Restraint stress stimulates colonic motility via central corticotropin-releasing factor and peripheral 5-HT3 receptors in conscious rats.

Although restraint stress accelerates colonic transit via a central corticotropin-releasing factor (CRF), the precise mechanism still remains unclear. We tested the hypothesis that restraint stress and central CRF stimulate colonic motility and transit via a vagal pathway and 5-HT(3) receptors of the proximal colon in rats. (51)Cr was injected via the catheter positioned in the proximal colon t...

متن کامل

Differential actions of peripheral corticotropin-releasing factor (CRF), urocortin II, and urocortin III on gastric emptying and colonic transit in mice: role of CRF receptor subtypes 1 and 2.

Peripheral CRF inhibits gastric emptying and stimulates colonic motor function in rats. We investigated the role of CRF(1) and CRF(2) receptors in i.p. CRF-induced alterations of gut transit in conscious mice using selective CRF(1) and CRF(2) ligands injected i.p. Gastric emptying 2 h after ingestion of a solid chow meal and colonic transit (time to expel a bead inserted into the distal colon) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 282 5  شماره 

صفحات  -

تاریخ انتشار 2002